
 

Some global theorems for plane curves continued

Isoperimetric Inequality

For any simple closed curve in IR
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Consider two parallel vertical lines di l touching
the curve on both sides enclose a circle in the

same slab like this
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Let A and A be the area enclosed by X and P respectively

Using Green's Thin we compute
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Adding these up use A M G M inequality i.e Mabe 0
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It remains to analyze the equality case

Suppose 41TA L Then we have all the inequalities

above are achieved as equalities In particular
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where R is independent of the choice of le la

Also equality case of Cauchy Schwarz inequality gives
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Switching the roles of X y coordinates and using the

invariance of R we have also y y R for some

constant Yo Therefore
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So lies on a circle of radius R centered at 0,90
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Four Vertex Theorem

For any simple closed convex curve in IR

I at least 4 vertices i.e points where K o

kinin
ellipse has
exactly 4 kma kmax
vertices
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Proof omitted

Note It is easy to show that I 2 vertices

where k achieves its maximum and

minimum What is non trivial is that

there are at least 2 more


