\oint Some global theorems for plane curves (continued)

Isoperimetric Inequality

For any simple closed curve in IR².

"=" holds \le round circle A = Area (Ω)

 $Proof:$ Let $d(s): [o, L] \longrightarrow \mathbb{R}^2$ be a simple closed $plane$ curve $p.b.a.\ell$.

> Consider two parallel vertical lines \mathcal{L}_1 , \mathcal{L}_2 touching the curve of on both sides, enclose a circle in the same slab like this:

Let A and \overline{A} be the area enclosed by α and β respectively. Using Green's Thm. We compute

$$
A = \int_0^L X(s) y'(s) ds
$$

\n
$$
\pi R^2 = \overline{A} = - \int_0^L \overline{y}(s) \overline{x}'(s) ds = - \int_0^L \overline{y}(s) x'(s) ds
$$

\n
$$
\int_0^2 \pi a e^{t} s e^{t} ds
$$

\n
$$
\pi R^2 = \overline{A} = - \int_0^L \overline{y}(s) \overline{x}'(s) ds
$$

\n
$$
\pi R^2 = \overline{A} = - \int_0^L \overline{y}(s) \overline{x}'(s) ds
$$

Adding these up & use A.M.-G.M. inequality (i.e. $\sqrt{ab} = \frac{a+b}{2}$):

$$
\sqrt{A} \sqrt{\pi R^2} \leq \frac{1}{2} (A + \pi R^2)
$$

\n
$$
\leq \frac{1}{2} \int_0^L (x(s) y'(s) - \bar{y}(s) x'(s)) ds
$$

\n
$$
= \frac{1}{2} \int_0^L \langle x(s), \bar{y}(s), (y'(s), -x'(s)) \rangle ds
$$

\n
$$
\left(\frac{\int_{\text{Guchy}^{-}}}{\int_{\text{Gluued}}} \right) \leq \frac{1}{2} \int_0^L \left| \frac{\langle \bar{x}(s), \bar{y}(s) \rangle \cdot \left| (y'(s), -x'(s)) \right| ds}{\int_{\text{Gluued}} \text{gives}} \right|
$$

\n
$$
= \frac{1}{2} R L
$$

\nSimilarly,

It remains to analyze the equality case. Suppose $4\pi A = L^2$. Then, we have all the inequalities above are achieved as equalities. In particular,

 $A = \pi R^2$ and $L = 2\pi R$ where R is independent of the choice of ℓ_1, ℓ_2 . Also, equality case of Cauchy-Schwarz inequality gives x, y) // (y, -× l ength 2^d $R = 1$ So, $(x,\overline{y}) \equiv R(y',-x')$, thus $x = Ry'$.

Switching the roles of x k y coordinates, and using the invariance of R, we have also $y - y_0 = R x'$ for some constant Yo. Therefore.

$$
\chi(s)^{2} + (y(s) - y_{0})^{2} = (R y'(s))^{2} + (Rx'(s))^{2}
$$

= $R^{2} (x'(s)^{2} + y'(s)^{2}) = R^{2}$
= 1

So, α lies on a circle of radius R centered at $(0, 9)$.

D

 $Def²$: A plane curve is said to be convex it k 30 everywhere.

Four Vertex Theorem For any simple closed (convex) curve in IR \exists at least 4 vertices (i.e. points where $k = o$)

 P roof: omitted.

 $\frac{1}{\sqrt{2}}$ It is easy to show that $\frac{1}{\sqrt{2}}$ vertices where k achieves its maximum and minimum What is non trivial is that there are at least 2 more!